If it's not what You are looking for type in the equation solver your own equation and let us solve it.
12y^2+y-1=0
a = 12; b = 1; c = -1;
Δ = b2-4ac
Δ = 12-4·12·(-1)
Δ = 49
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$y_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$y_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{49}=7$$y_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(1)-7}{2*12}=\frac{-8}{24} =-1/3 $$y_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(1)+7}{2*12}=\frac{6}{24} =1/4 $
| 7x^2-110x+121=0 | | 9k-7k-k=5 | | 6.5x-2.3=4.2 | | √6y+15-4=y | | 8x+1.4=2x+1.8 | | 11s-9s=16 | | d-32=40 | | 10+w+4=22 | | 2x-54=90 | | 3(5/6x-1/20=6 | | x/6*3-7=23 | | 8^x^+1-2x×4x=112 | | -(z+9)+(6z+1)=-2(z=1) | | 5x2-28x+19=0 | | 2(x-3)=-18.3 | | x/2*3=4 | | 20j-19j=19 | | C=200+10x | | 2(x-30)=-18 | | 5(6z-1)-2(z+1)=24(z+1) | | 2x^2+2X+X=4-X | | 2x-54=190 | | 3x+(10)=36 | | x2+4=13 | | 2x+2(7x+22)=-36 | | 7p+4=88 | | 6x+(1-2x)+(5x-3)+3x=2x+(-17+4x+35) | | 2x+12=-5x-17 | | -16x^2+150x+5.8=0 | | 1.1(-0.3w+10=7.7 | | k/2+-15=-21 | | 2x-16=1x+10 |